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A simple method is outlined for finding the arrangement of lattice points in a lattice plane of given 
Miller indices, and for determining the stacking properties of such planes. 

Introduction 

In a recent paper Neustadt, Cagle & Waser (1968) 
indicated the usefulness of the reciprocal lattice as an 
aid to the solution of problems in lattice geometry. 
No reference was made however to recent papers de- 
scribing elegant and general solutions to problems in 
lattice geometry which result when the concept of the 
reciprocal lattice is used in conjunction with a tensor 
notation. General descriptions of the type of problem 
which may be solved in this way are given by Patterson 
(1959) and Rautala, Guy & Smith (1964), and exam- 
ples of more detailed analyses are given in recent papers 
on the crystallography of deformation twinning by 
Bilby & Crocker (1965), Saxl (1967) and Bevis & 
Crocker (1968). Further examples are given below in 
the form of alternative solutions to those given by 
Jaswon & Dove (1955) and Jaswon (1965) to problems 
on the geometry of lattice planes. These problems are 
relevant to the recent interest in the interpretation of 
electron diffraction patterns from twinned crystalline 
foils (Bullough & Wayman, 1966; Calbick & Marcus, 
1967). 

In this analysis, lattice vectors and reciprocal-lattice 
vectors representing lattice-plane normals will be re- 
ferred to the direct latdce basis ei ( i= 1,2, 3) and the 
reciprocal lattice basis c i respectively. The direct and 
reciprocal lattice bases are related by the equations 
cLcj = 6}, c t = ciJcj or el = cijc~ where 5} is the Kronec- 
ker delta, c,j = ci.  cj and c lg = c t . c~ are the metric ten- 
sors of the direct and reciprocal lattice bases respec- 
tively, and the summation convention of the tensor 
calculus applies. The lattice recto1 v parallel to the 
direction with indices [#] and the vector h normal to 
the plane with Miller indices (hi) will be represented 
by vectors v = vici and h =hie  ~ respectively. The indices 
Iv t] are the eontravariant components v i of the vector 
v and the Miller indices (hi) are the covariant compo- 
nents hi of the vector h. 

Arrangement of lattice points in a lattice plane 

The problem of mapping a lattice plane with Miller 
indices (hi) is considered first. Let the vectors u =  uict 
and v=v%i (Fig. 1) be primitive lattice vectors which 
define a cell in the lattice plane (hi), so that hiu i = 

htv i = 0, and let the vector w = wtci be a primitive lattice 
vector joining a lattice point in the plane (hi) contain- 
ing the origin (plane 0) to a lattice point in the next 
parallel plane (plane 1), so that hiw i = 1. If the lattice 
parameters as described by el are known, then cij and 
clJ can be calculated. The cell defined by u and v may 
then be constructed, since u and v, the magnitudes of 
u and v respectively, are given by the equations: 

U 2 = CIjUiU J ; V 2 = CijVfU ~ , (1) 

and the angle ~0 between n and v is given by 

cos ~o = (cij#d)u-~v -~ . (2) 

If a plane is to be mapped correctly, then it is es- 
sential that u and v define a primitive cell in that plane. 
A simple rule which ensures that the components u i 
and v i are the components of vectors defining a prim- 
rive cell in a lattice plane may be derived as follows. 

The case where ci defines a primitive cell is con- 
sidered first. The volume V' of the cell defined by n, 
v and w is equal to 

V ' = h .  u x v ,  (3) 

where h is the vector normal to u and v, with magnitude 
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Fig. 1. Illustration of vectors u, v, w, h and t. The vectors u 
and v define a plane with Miller indices (hal. The plane (0) 
contains the origin and plane (1) is the next parallel plane. 
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(ciJh~hj) -~ equal to the interplanar spacing of planes (h 0, 

h= hiei(ciJhthj) -1 . (4) 

The vector product of u and v is equal to 

d-l[h3Ohl] or d-l[hzhlO], where d is the highest common 
factor of the two non-zero components [uq. For ex- 
ample, for (h0=(433) these three lattice vectors are 
[01T], d =  3; [304], d =  1 ; [340], d =  1. For the case [u l] = 
[h2h~O] equation (11) becomes 

u x v = V k t e i ,  (5) m l h z -  mzhl = 1 , (12) 

where V is the volume ot the cell defined by the basis 
e* and 

kt =~lu~v k • (6) 

elkt ( i , j ,k= 1,2, 3) are the components of the alternat- 
ing tensor. Substituting equations (4) and (5) in equa- 
tion (3) we obtain 

v ' =  Vcl#kihj(c*~hihj)-~ (7) 

If the cell defined by el is a primitive cell then the cell 
defined by u, v and w is also primitive when V= V', 
and in this case equation (7) reduces to 

ciJhihj=ciJkthj. (8) 

and by equation (10) the solution (ml,m2) of equation 
(13) results in the following components for the vector v 

[V i] = [h2(1 + m3) -- h3m2, 

- h l ( l + m 3 ) + h 3 m a  , - 1 ] ,  (13) 

where m3 is an arbitrary integer. Further vectors v may 
be generated by using the general solution for equation 
(12). A solution (mbm2) of equation (12) may be deter- 
mined rapidly by inspection. For example, if the greater 
of Ihll and Ih21 is equal to T, then for 2 <  T<20,  values 
of Imll and Ira21 can always be less than or equal to 

1) , ,or odd or eve .  r e s .  

The general solution to equation (8) is kl=hi,  so that 
the restriction on u ! and vi which ensures that u and v 
define a primitive cell in the lattice plane (hi) is given by 

hl=etkiulv ~ . (9) 

The components v i of lattice vectors contained in 
the plane (hi) may be generated from the components 
of any primitive lattice vector uie, contained in this 
plane using the relation 

[V i] ----- [U I -- h3mz + h2m3 , u 2 + h3ml - him3 , 

u3-hzmt+htm2],  (10) 

where rex, m2 and m3 are arbitrary integers. Equations 
(9) and (10) give the following restriction on the inte- 
gers ml, m2 and m3. 

ml ul q- m2 u2 -F m3 u3 = 1, (11) 

which ensures that uie* and vie, define a primitive edl 
in the plane (hi). The procedure for determining integral 
solutions (ml, mz, m3) of this linear diophantine equa- 
tion is straightforward; see for example Hunter (1964). 
Substitution in equation (10) of a solution (m~) of 
equation (11) or any solution obtained from the gen- 
eral solution of equation (11) in the form 

mi=m~ -cj~iuJnk , 

(nl, n2, n3 arbitrary integers) will give the components 
v I of a vector v. 

The most direct method of mapping a lattice plane 
with Miller indices (hbh2,h3) is to take ule* to be one 
of the lattice vectors with components d-l[Oh3h2], 

tively. The exception is for the case when one of [hi[ 
or [hz[ is unity, where in any case the solution of equa- 
tion (12) is trivial. Analogous procedures apply when 
the components of the vector u are taken to be [Oh3hz] 
or [h30hl]. 

The extension of the analysis given above to cases 
where the basis e* defines a centred cell is trivial. For 
lattice planes with Miller indices satisfying the condi- 
tions given in Table 1 the number p is the number of 
the vectors u, v and u + v which must be doubly prim- 
itive centred lattice vectors. The correct mapping is 
obtained by reducing the magnitudes of the relevant 
vectors by one half. 

Table 1. Details of the way cell centring changes the 
arrangement of  lattice points in a lattice plane and the 

stacking properties of" such planes 

Cell Type of plane p q 
Primitive hlh2h3 0 0 
Body-centred hi + h2 + h3 even 1 0 

hi + h2 + h3 odd 0 1 
Face-centred hi, hz, h3 all odd  2 (3) 0 

hi, h2, h3 mixed 1 1 
Base centred hi + h2 even 1 0 
(c3) hi + hz odd  0 1 

Stacking properties of lattice planes 

The determination of the stacking properties of lattice 
planes with Miller indices (h0 is considered next, and 
is restricted at first to cases where e* defines a primitive 
cell. The projection of plane 1 onto plane 0 is indicated 
by broken lines in Fig. 1. The shift vector t (Jaswon & 
Dove, 1955) which enables the stacking properties of 
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the planes (hi) to be determined is equal to t = w - h .  
On noting that 

then 
h = hici = hic i where h i = ct~hj, 

t = [w i - h~(h~hD-qci = t ic~. (14) 

The magnitude of t and the angle between t and u or v 
may be determined from equations analogous to equa- 
tions (1) and (2) and hence the stacking properties of 
the (h0 planes determined. When c~ defines a centred 
cell the magnitude of t must be reduced by one half 
when q of Table 1 is equal to l, and remains as for 
the primitive case when q = 0. 

The analysis presented above may be used for study- 
ing the geometry of lattice planes in any lattice pro- 
vided that the lattice parameters of the basis c~ are 
known, and that the basis el defines one of the centred 
cells indicated in Table 1. The analysis is clearly ap- 
plicable to the study of reciprocal lattice planes and 
may also be extended without difficulty to include the 
mapping of motif units. 

Application 

In tiffs section the analyses presented above are used 
to map and determine the stacking properties of the 
(5, 8,11) body-centred cubic lattice planes which have 
been predicted as likely deformation twin habit planes 
in b.c.c, crystals (Bevis, Rowlands & Acton, 1968). 
In the mapping of the (5, 8,11) plane the components 
of the vector u~c~ are taken to be [850]. For this case 
equation (13) is equal to 

8ml - 5m2 = 1 . 

An integral solution (mbm2) of this equation is (2,3) 
and a selection of vectors v which, together with [uq = 
[850] define a primitive cell in the (5,8,11) lattice plane, 
are given by equation (13) as: 

[ v i ] = [ 8 ( l + m a ) - 3 3 ,  - 5 ( 1 + m 3 ) + 2 2 ,  - 1 ]  

where m3 is an arbitrary integer. For example, for 
m3-=0, 1, 2 and 3 the components [v i] are [25,17,1], 
[1-7,12,T], [9,7,T] and [121] respectively. Equations (1) 
and (2) have been used to determine the dimensions 
of the cell defined by [830] and [12T] and the resultant 
cell is shown in bold lines in Fig. 2. Reference to Table 1 

\ \ U 

Fig.2. The body-centred cubic (5, 8, 11) lattice plane, u= 
(89)1/2a, v=(6)l/2a and cos ~ = -  18/(6x 89)1/2 where a is 
the lattice parameter of the body-centred cubic cell. t= 
(22 02 90) 1/2 . a/210, cos fl=210/(22 02 90 x 6)1/2 and the 
open circles represent the projection of lattice points in 
plane (1) onto plane (0). 

for the (5, 8,11) plane gives p =  1 so that one of the 
vectors u, v or u + v  must be a doubly primitive b.c.c. 
lattice vector. In this case u +v  is doubly primitive so 
that the cell in Fig. 2 is centred. 

In determining the stacking properties of lattice 
planes (hi) it is necessary to choose a lattice vector 
w=  wiei which joins the origin (plane 0) to a lattice 
point in the next parallel plane (plane 1). The restric- 
tion on the components w~ is hiw ~ = 1. For the (5, 8,11) 
planes the components [wq have been taken to be [201]. 
The quantities [h~(hkhD -1] in equation (14) are equal 
to (210) -1 [5,8,11], so that the shift vector t, by equa- 
tion (14), has components [tq = (210) -1 [ -  425, - 8,199]. 
From Table 1, q = 0 for the (5, 8,11) b.c.c, lattice plane 
so that this is a shift vector of the correct magnitude 
and is indicated in Fig. 2. 
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